PHYSICAL REVIEW E VOLUME 54, NUMBER 2 AUGUST 1996

Dynamics of cytoskeletal filaments
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We apply elasticity theory formalism to study long-range, collective vibrations of actin and intermediate
filaments, which are long cylindrical macromolecules and constitute part of the cytoskeleton network in
eukariotic cells. The dispersion relations are obtained for elastic waves propagating in the vicinity of filaments
which are modeled as elastic cylindrical rods immersed in a liquid. In the long-wavelength limit the filament-
water system supports two acoustic modes with propagation speeds of approximately 800 and 1300 m/s and a
single flexural wave with parabolic dispersion law. The presence of solvent leads to radiation of acoustic
energy from waves with a phase velocity exceeding the speed of sound of water. Our study complements the
existing normal-mode analysis of free actin filament vibrations and generalizes these results for different
structures as well as including the effects of solvef84.063-651X96)12208-X]

PACS numbds): 87.15-v

I. INTRODUCTION shape[15], hydrodynamic flow[16], and direct measure-
ments[17,18.
As evidenced by recent publicatiofis—3], there is a ris- In this paper we apply the formalism of classical elasticity

ing interest in the physical science community in the me-theory to describe the vibrational modes and mechanical
chanical properties of cytoskeleton. Besides its own imporwave propagation in rodlike cytoskeleton components, such
tance, the cytoskeleton componentmicrotubules and as AFs and IFs, immersed in water. This study complements
filaments serve as biological counterparts to recently fabri-our recent treatmerffl9] of elastic vibrations in MT-solvent
cated nanotubulep4] and free-standing filamen{&]. The  system. This investigation arises in the context of the general
cytoskeleton filamentous network, which is found in all eu-problem of protein dynamick20] and connection between
kariotic cells, defines the cell shape and serves as a globplotein dynamics and functiof21], as well as the recent
framework for mechanical and functional integration of theadvancements in experimental techniques, which enable us
whole cell [6]. Besides its shape-supporting function, theto observe directly the movement of a single filamésge,
filament system takes part in chromosomal movement, cekb.g.,[18,27)). From the point of view of physiology, the
motility [7], provides tracks for guiding transport of particles motion of AFs is directly related to such important processes
[8], and could possibly directly transmit signals along theas cell movemenit7] and muscle contractiof23]. Analysis
filaments[9]. of the sliding motion of cytoskeletal filaments, which are

The components of the cytoskeleton are classified accorgropelled by the motor proteins such as myosin and kinesin
ing to their diameter into three major clas$6% actin fila- [2,3,24, allows for better understanding of how a directional
ments (6—10 nn)j, intermediate filament$7—11 nn), and  motion is created in a Brownian physical systg2b|. Re-
microtubules(25 nm). While the microtubulesMTs) have  cently, thein vitro setup, in which the head of AF was spa-
the form of hollow cylindricalkhells[10], the actin filaments tially fixed, was used to study the symmetry breaking insta-
(AFs) and intermediate filamenidFs) could be in the first bilities in spontaneous oscillations of the filameft].
approximation modeled as long cylindricalds More spe-  Finally, our treatment of filament dynamics parallels the on-
cifically, the results of x-ray fiber diffraction dafdl] allow  going research on acoustic phonon confinement in free-
us to describe the ARF-actin structure as two-stranded he- standing[26,27 and buried[28] semiconductor quantum
lix consisting of the globular actifG-actin monomers. The wires.

various types of IFgincluding neurofilamenjsare formed The simplest possible description of filament and MT vi-
by several 2—3 nm diameter protofilaments, twisted togethebrations is based on a linear model and is used extensively
like the strands of a rop9,12]. for analysis of fluctuations in shap#5-17. Further elabo-

In a series of experiments, the flexural rigidity and elasticrations of the one-dimensional model have addressed the
Young's modulus for MTs[13] and AFs[14] have been problem of instabilities in vibrations of AH4,3] and soliton
obtained from the measurement of thermal fluctuations irpropagation in MT$29] due to inclusion of nonlinear terms
end-to-end distance of the proteins. In more recent worksn Hamiltonian and polarization effects30]. The linear
the elastic parameters of the cytoskeleton components weraodel also serves as a basis for theoretical study of elastic
determined using Fourier-analysis of thermal fluctuations irproperties of cytoskeleton netwofRB1]. Despite the univer-
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sality and simplicity of the linear model, its applicability is revealing both universal and microscopic, model-specific de-
restricted to a limit of extremely large wavelengths of thetails of the vibrational spectrum. Universal properties of long
propagating waves, where all the diversity of the vibrationalprotein dynamics are also of major importance to many pro-
spectrum is reduced to pure longitudinal, torsional, andein functions, since they represent long-range, slow, collec-
bending modes. tive conformal motions of the protein.

On the other hand, the most exhaustive information about Microscopic and elastic-medium approaches also comple-
internal motion of all constituent elements of the protein carMent each other in a sense that they have diffeftitugh
be obtained from microscopic calculations, such as normdfverlapping ranges of applicability. The microscopic calcu-
mode analysis[32,33. In particular, Tirion and ben- lations work best for systems with small numbers of con-
Avraham[34] used the a G-actin modgB5] to obtain the stituent elements, such as AFs. To the contrary, with the
vibrational spectrum of a G-actin monomer bound with ADpincrease of the filament diametdfs and MT$, the accu-
and C&*. These calculations required solution of a general/@cy and limits of applicability of the continuous-medium
ized eigenvalue equation for 1384 torsional degrees of fredrmalism increase, while the amount of computations and
dom of a 375-residue polypeptide chain. Assigning a thermafUmber of required fitting parameters for the microscopic
energy ofksT/2 (whereT is the absolute temperature and calculations grow significantly. An additional benefit of the
ke is Boltzmann's constanto each mode, the authors have macroscopic treatment is that it makes possible the inclusion

calculated the average fluctuations in the positions opf the effects of the surrounding solvent in a natural and

a-carbon atoms in the chain. It was found that over 50% O1simple way[39]. Macroscopic consideration of vibrations in
the overall motion can be described by first four, slow

a water-protein system provides insight into the effects of
modes. Later[36], the calculated slow normal modes of solvent on protein dynamics, and could facilitate the intro-
G-actin were used as structural parameters to refine th@!ction of reasonable physical approximations to be used in

F-actin model[11] against 8-A resolution x-ray fiber dif- Microscopic calculations. .
fraction data. The rest of the paper is organized as follows. In Sec. Il we

Most recently, ben-Avraham and Tiridi87] considered derive the general dispersion relations for waves supported

propagation of elastic waves in long AFs. Ignoring the inter-2Y @ filament-fluid system; the analysis of the vibrational
nal motion in actin monomers and allowing for quasiperiod-SPectrum follows in Sec. lll, while the numerical results and
icity (helicity) of the F-actin structure, the authors obtainegdiscussion are provided in Sec. IV. Finally, Sec. V contains

six vibrational branches, corresponding to three translationfondus'ons’ and the Appendix details properties of Bessel's

and three rotational degrees of freedom for each actin mondunctions used in the text.

mer. The model describes the binding between actin mono-
mers with the help of a single phenomenological strength Il. BASIC EQUATIONS
constant, which is obtained by fitting to available experimen-
tal data. The calculated dependence of mode frequenay
the wave phase reproduces qualitatively the results of the
linear model, and also describes the internal motion of AF.
Though the normal mode analysis, based on the solutio
of equations of motion for all microscopic degrees of free-
dom, provides detailed information on both large-scale ané
local conformal motion, it lacks some attractive features o

the linear model, such as universality and simplicity. Each | The getnera{ so_luU_gn t?]f thel_e(Ijast|c<|t)|§2 equatlljons ftcir dis-
protein configuration requires separaté hoc calculations, placement vectou inside the cylinder(<R) can be written

which become rather cumbersome with the increase in prd11 the form[38]

tein size. Besides, the detailed information on each vibra-
tional mode is often not required, since many fundamental
features of conformal motion can be explained using only th<=.|~_|
slowest, large-scale collective vibrations. Finally, the inclu- . ) . )
sion of solvent effects into the microscopic calculations is('f/” X) saﬂsfy_scqlar wave equation with a propage_mon speed
not straightforward, especially under conditions when ther@qual to Ion.g|tud|na[transvers}esound spees, (s,) in cyl-
is radiation of acoustic energy from the vibrating protein intoInder material, where
the surrounding water. Description of such processes re-
guires consideration of large volumes of the solvent, which 3|2
therefore cannot be treated microscopically, but rather as a
continuous medium.

In this paper we extend the applicability of a simple linearFor the outer regiorm,>R, the displacements of water, is
model, by taking into account the internal motion of proteinsspecified by a scalar potentid:
by treating the interior as a continuous medium. Application
of a standard formalism of elasticity theof$8] allows the u,=gradd. 2
description of universal features of wave propagation in ar-
bitrary cylindrical and hollow protein filaments. Such a treat- In order to describe harmonic vibratiofwith frequency
ment complements the normal mode analysis, which require® and wave vectok,=k/R) in a coupled cylinder-water
ad hoccalculations tailored to a specific structy@7] and  system, localized near the surface of the filament, we set

We model filament$lFs and AF$ with an infinitely long
elastic cylinder immersed in water and occupying the region
r <R. The material of the cylinder is assumed to be isotropic
With Young’'s modulusE and Poisson’s ratie, and density

p. Below we apply the standard formalism of classical elas-
icity theory, thus ignoring the solvent viscosity and the fric-
ion between the water and filament.

u=Vep+VX(ei)+RVXVX(ex). 1)

eree, is a unit vector along the axiy and potentidk) ¢

 1» E , E
T1=20)(1tv) p’ X 2Atwp
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) iCoKm(kwl/R) —iu,(r)=Kcql (kT /R)+mMcy(RIT)1 (ki /R)
1 icil (K r/R) ’
P11, ] tealml x exime+ikz/R—i wt). +kiCl m(#11/R),
vl Ro| Celnler/R) (r R/ (kT /R) + kiCol (ki IR)
—u,(r)=mc,(R/r r c r
X Cal (kI IR) ® 1( m( K| KLl m Kt
€) +mkG(R/M) I n(f/R),

In writing Eq. (3), it is assumed that the quantities,(is a —Uy(r)=Kc I (K T/R) + k2C3l (T IR).  (4)

sound speed in water
2 1o 5 From continuity of the displacements of water and filament
ki =K"= (0R/s)*, atr=R we obtain

K|2=k2—(wR/S|)2, [ ik 8
Co=—pr - LriCel (k) + MGyl (k) + Ky Cal (1) .
K2=k?—(wR/s,)? Kol )

Applying standard boundary conditiof38] for a stress
tensor ar =R, and expressing the water presspra terms

of scalar potential,

are positive. Note that in the opposite case:<§,f<0 (i.e.,
w>s,k,) the acoustic energy is radiated from the filament
into surrounding water. Also, ikﬁt<0, the corresponding
scalar potentials specifgonfinedvibrations, which do not p=—pwd5, (5)
decay exponentially towards the center of the filament. The

. . . . 2 2 2 . . ) . 3 .
vibrations with negativec,, «j’, or x; can be still treated \herep,, is a water density, we arrive at the eigenequation

with the help of Eq.(3) using analytical properties of for elastic vibrations of coupled water-filament system:
Bessel's functions, as shown in the Appendix.

Substituting the potential$, , andy from Eq.(3) to Eq. D[c,,C,,65]7=0, (6)
(1), we find the components of the displacement vector in the
filament, where the matrixD is equal to
|
2m(l1o— ) — (kg +2m)l g+ 21y 2mk(l o= 111)
D= — 2kl —mkly —(kE+K)ly : (7

(2m2+ K2+ k&) 10— 2(1+W)l 1y 2mly—(1+W)lo]  2k[(M?+ k&) 10— (1+ W)l 4]

Here we use notations ;o=I(x| ) andl, y=«;(x);  fines two uncoupled sets of modes corresponding to pure
the term torsional and radial-longitudinal vibrations. Tte¥sional vi-
brations of the filamenfsee Fig. 1a)] are decoupled from
_Pw Km(ky) (w_R the water motion and are characterized by the dispersion law
P —2kuKi(kw) | St

wh)=s/(&R)Z+K; (9)
describes the effect of water on the vibration of the filament.
In the absence of watewW/=0, Egs.(6) and(7) reduce to  and the displacement vector with componamts: u,=0,
these for elastic vibrations of a free cylindrical rf@B,40.
The dispersion relation of the vibrations in a water-filament U, dq(&r). (10)
system is obtained by requiring that the determinant of ma- ¢ !
trix D equals zero, and is analyzed in the following section

2

(®)

‘Here the integer inde} numerates nonzero solutions of

equationJ,(¢;)=0. In addition to the generic set of solu-

tions in Egs.(9) and (10), there exists a special modek)
The dispersion relation for the vibration of cylindrical with a linear dispersion law,

rods specifies an infinite number of modeg; for eachm,

Ill. ANALYSIS OF FILAMENT VIBRATIONS

which we numerate ajs=0,1,2 ... .Below we analyze two oM=sk, (12)
distinct cases of axisymmetriean=0) and flexural (h=1)
vibrations.

and the displacemeruq,ocrz, which does not belong to a
general solution of Eq$1) and(3) of the elastic equations of
motion.

In the case of axisymmetric vibrationsn&0) the char- The radial-longitudinal modes[see Fig. 1b)] are speci-
acteristic equation specified by the matfixin Eq. (7) de- fied by a characteristic equation

A. Axisymmetric vibrations
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(b)

frequenciesw, the asymptotic relationn;’(z) = VE/pk is

not changed in the presence of water. In tkhort-
wavelengtHimit, this mode describes the surfa@aterface
Rayleigh (Stonley wave propagating near cylinder surface
(water-cylinder interface Corresponding propagation speed
s is found as a solution of standard algebraic equations for
Rayleigh or Stonley velocitie38].

In the absence of watd#0], the dispersion ohigher
order radial-longitudinal modesp§’(k,) with j=1, can be
characterized by the following interpolation formula, valid in
the limits ofk<1 andk>j+1:

0§ (k) =s/(¢IRZ+KE, (14)

where constantg; are given by nonzero roots of the follow-
ing two equations:

Ji(sigi/s) =0, (51£;/2)Io(L5)=I1(E)). (15

In the intermediate region,<4k<<j+ 1, the waves propagate
with a bulk longitudinal sound spee@xs|k, .

Thus, atk=0, the modes withj=1 have finite cutoff
frequencies equal tg;R/s;. The situation is changed when
water is present. WhelV+#0, the regionw>s,k, corre-
sponds to radiation of acoustic waves out of the filament, and
is characterized by a complex frequency spectrum. Analysis
of Eq. (12) shows that, with a decrease lof, the branches
() enter the radiational sectap>s,k, at frequencies
o, given by nonzero solutions of either of the following
two equations:

Ji(wjRys,°—s{9)=0 or Jy(wjRVs,*~s %)=0.

(16)

FIG. 1. Schematic view of displacement patterns for different

vibrational modes of a filamenta) axisymmetric torsional mode;
(b) axisymmetric radial-longitudinal modé¢) example of a flex-
ural mode.

lo(kt) 5 5, lo(k) 2 2
Kt|1(Kt)_(k +k5) +2(1+W)(k“—«p),

2.2
Ak Kl (k)
(12

where the filament-water coupling factdf is given by Eq.
(8). Note that Eg.(12) is written in the assumption
kZ>K?>0, i.e.,w>sk,. If this condition does not hold, the
modified Bessel's functioh should be replaced by function
J as shown in the Appendix.

In the absence of watewy/=0, Eq.(12) is reduced to the
Pochhammer equation and was analyzed in much ddil
The dispersion relation for théowest radial-longitudinal
mode w{}f’ in the limits of small and large wave vectoks
has the following behavior:

VE/pk,, k<1,

(1K) =
woo (k) SeurzZ, k>1.

(13
Thus, in the long-wavelengthlimit the acoustic mode
wiH) (k) corresponds to longitudinal waves in thin rd@s]

with propagation speed of E/p. Since the water-filament
coupling termW given by Eq.(8) tends to zero at small

Finally, in the limit of large wave vectdk,, independent of
the presence of water, the dispersion relation takes the form
w=5sk,, corresponding to the confined transverse waves in
the filament.

B. Flexural waves

Vibrations withm=1 describe the flexural waves of the
filament, and are specified by Eq$) and (7). It has been
shown[26] that, in the absence of water, there exists only
one flexural modésee Fig. 1c)], emanating from the origin
[i.e., (0)=0]. This branch corresponds to azimuthal num-
berm=1 and is characterized by a parabolic dispersion at
k,<1:

w1o(k,) = VE/pRK/2. (17)

Such a type of vibration corresponds to the bending mode of
very thin rods and is predicted by a simple linear mgaé].
Since the water-cylinder coupling term, defined by E),
vanishes at smalb andk,, the long-wavelength asymptot-
ics, given by Eq(17), holds in the presence of water as well.
The rest of the flexural modes, in the absence of water,
have finite cutoff frequencies &,=0. With water present,
their frequencies gain a negative imaginary part at
w>s,k,, and the acoustic energy is radiated from the wire.
At large wave vectork,>m+1, all flexural modes behave
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. . less frequencywR/s; and the dimensionless wave vector

12} ol g k=k,R.
In Fig. 2 we present the dispersion relations for a set of

100 1 axisymmetrictorsional vibrations of a cylindrical filament.
T,,*‘-' ol Since in our treatment the friction between water and fila-
e s . ] ment surface is neglected, the pure torsional vibrations of the
S filament are not coupled with the water motion, and are es-
Fry sentially free. As seen from Fig. 2, there exists one acoustic
S torsional wave with a linear dispersion law and propagation
> 4 ® 1 speeds;, given by Eq.(11). The higher torsional modes,
3 @oo given by Eq.(9), are characterized by finite cutoff frequen-

2r 1 cies atk=0, and phase velocities approachsgn the short-

wavelength limit.
% 1 2 3 4 5 6 7 The spectrum of theadial-longitudinal vibrations, given

by Eq.(12), is more complicatedsee Fig. 3. The frequen-
cies of the filament vibrations in the presence of water and
without the surrounding water are marked by solid and
FIG. 2. Dimensionless frequeneyR/s; vs dimensionless wave dashed lines, respectively; the dotted straight lines corre-
vector k=Rk, for axisymmetric (h=0) torsional vibrations of a spond tow=sk, and w=sk,. Even in the case of free
cylindrical filament. filament vibrations, the form of modes depends on a dimen-
sionless parametes; /s,= \2(1— v)/(1—2v). Since the ab-
like transverse wavesyn,;=sk,, while in the intermediate solute value of the Poisson’s constaris unknown for most
region of I1<k,<m+1 the dependence,;=sk, is re- macromolecules, we choose a typical valuevef0.3, lead-
vealed. ing to the ratio of bulk longitudinal and transverse propaga-
tion speeds, /s;~1.87.
As seen from Fig. 3, the free vibrations of the filament
V. NUMERICAL RESULTS AND DISCUSSION (dashed linesare characterized by one acoustic mode and a
set of higher modes with finite cutoff frequencies. In the

Analysis of Eqs(6)—(8) performed in Sec. Il provides a lona-wavelenath limit. the acoustic wave propadates with a
gualitative description of elastic filament vibrations in a wa- g-wav gth imit, ustic wave propag W
speedyE/p~1.61s;, in agreement with results of a simple

ter environment. In order to visualize the dispersion rela—l_ h at larcé th . de b ¢
tions, we present the calculated dependeagk) for axi-  'neartheory; at largé the acoustic mode becomes a surface

symmetric torsional and radial-longitudinal waves in Figs. pwave with a propagation speed equal to Rayleigh.veloci_ty,
and 3, respectively. To emphasize thversalproperties of ~ Ssuf™=0.93. The higher modes demonstrate an anticrossing
filament vibration, independent of absolute values of radiu%)ehav'or in the regiosk,<w<sk,, and have a phase ve-

R and material propagation spesd we use the dimension- [0City approachings, at higher wave vectok, .
propag pesd When the vibrations of filament are considered in the

presence of a water environment, the form of the dispersion
law is characterized by two additional dimensionless con-
stants: the ratio of water and the filament density/p, and

the ratio of sound speed in water and in the filament,
sw/S; . For concreteness, in Fig. 3 we presented the results of
numerical calculations with parameteps,/p and s, /s;,
corresponding to that for AFs. We note that for AFs the
limits of applicability of the continuous approach are limited
rather severely by the inequality<1, since the effective
radius of AF is of the order of that of an individual mono-
mer. However, in the case of AF we can rely on the experi-
mentally measured elastic constants and can compare quali-
tatively our results with normal-mode analysis by ben-
Avraham and Tirion[37]. We also discuss below how the

Wave Vector (k; R)

Frequency (wR/s;)

00,,:14-" ; , ) ) . . different values of the dimensionless parameijgfép and
2 8 4 s & 4 sw /St change the dispersion relations depicted in Fig. 3.
Wave Vector (k; R) As for elastic constants, the experimentally measured

quantity iIsES, whereS is an effective cross-section of a
FIG. 3. Dispersion relationsng”(k), for axisymmetricradial- fll_ament. Recent measurements of the parame&for AFs
longitudinal vibrations of the cylindrical filament. Soliddashey ~ 9iVe the values of 4374.6 nN[15] and 46.8-2.8 nN[17].
lines correspond to vibrations of the filament withithout) water, ~ USing the valueE S=46 nN, the mass of the actin monomer
and modes witj=0,1,2 (=0, . .. ,5).Dotted lines correspond to M =43 kDa, and the rise per monomer=2.75 nm, we find
w=sK,=Ss,K, (upper line and w=s,k, (lower ling). Other nota-  the propagation speed of acoustic radial-longitudinal wave
tions coincide with those in Fig. 2. equal to VE/p=VES//M~1.3 km/s. Then, using the
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adopted value of Poisson’s ratie= 0.3, we find a transverse where /=2.75 nm is the rise per monomer and
sound speeds;= VE/2(1+ v) p~800 m/s, and a longitudinal ¢¢=166.15° is the angle of rotation between subsequent
sound speeds;=\(1—v)E/(1—2v)(1+ v)p~1.5 km/s, of monomers.

the AF material. The bulk longitudinal propagation speed Combining, with the help of Eq(18), Figs. 2 and 3 for

s, of AF material practically coincides with the sound speedaxisymmetric vibrations as well as modes witi=1, we

in water,s,~s,, . Finally, to find the AF radiu® and density ~ obtain the dispersion dependence which is qualitatively simi-
p, we should introduce a somewhat arbitrarily defined crosslar to that of Ref.[37], for wave vector|k|<1. Both ap-
section are&®. TakingS=25 nn¥ [15], we obtain the radius proaches reproduce two acoustic modass$<1, or k<1
R=.S/7~28 A and filament densityp=M//S~1.05 andm=0) and one helical modéat ¢~ ¢,, or k<1 and
glcm®. We also find that the dimensionless frequency,m=1) predicted by the simple linear model, as well as the
wR/s;, of Figs. 1 and 2 corresponds to a cyclic frequencyfinite cutoff frequencies of higher modes in the absence of
fo=s/2mR~45 GHz whenwR/s;=1. water, and complex anticrossing behavior along the line with

The dispersion relations for the axisymmetric radial-@=Ssik;. There also exist several dissimilarities due to the
|0ngitudina| modes Correspond to solid lines in F|g 3. Thedifferences in the models. The continuous model is unable to
most important effect of water on the vibration of the fila- describe the dispersion law in the region ¢f /2, while
ment is that the acoustic energy is radiated by those wave§e ad hoc calculations provide important information on
with the phase velocitiesp/k,, exceeding the speed of merging of different modes. The normal mode analysis,
sound in waters,,. The lowest(i.e., acoustitmode has, in based on the assumptionmdid monomers, resulted in only
the long-wavelength limit, a propagation speedSix branches; inclusion of the mtgarna_l degrees of .freedo.m

E/p~1300 m/s which is lower than the sound speed inwould lead to a larger number of vibrational modes, in quali-
water, and is not affected by the presence of solvent fofative agreement with the elastic continuum model. The mi-
k<1. At large wave vectok, the lowest mode corresponds Croscopic calculations of ben-Avraham and Tirion, based on
to interface vibrations and has a propagation spegg, a single fitting parameter, resul_ted in the prc_>pagat|0n speed
lower than the Rayleigh speed in the absence of water. In the=410 m/s for the torsional vibrations. This value, com-
region w>s,k,, the higher-order modes are radiated fromPared to the speed/Fgwl.S km/s of radial-longitudinal
the filament and are not shown in Fig. 3, since their frequenYibrations (reproduced in both modselsresults in an un-

cies are complex. The frequencies of the higher-order modedhysical value of Poisson’s ratio;~—3.5, and therefore
coincide with those for a free filament at=s,k,, and in  contradicts the assumption of isotropic elastic continuum. At

the region ofw>s,k, the vibrational frequencies in the last, our treatment provides information about the effects of

coupled water-filament system are slightly lower than thos&0lvent on the AF vibration, with the most important conclu-
for a free filament. At large wave vectok,>w/s,, the  SiOn being that the acoustic energy is radiated from AF over
propagation speeds for waves in both filament-water systetyide ranges of frequency and wavelength. _ .
and free filament approach the bulk transverse spgewe ~_ Finally, we discuss how the dispersion law, depicted in
do not present the numerical results for the flexural mode&19: 3 for the specific valuep,/p=0.95 ands,,=1.88&;,
(m=1), since qualitatively the behavior of these modes isvaries as parameters change. It follows from Fig. 3 that the
similar to higher-order modes in Fig. 3. The only exceptionform of dispersion curves for the water-filament vibrations
occurs in the case om=1, where an additional bending (;olid lineg can be 'qualitativefly predicted frpm the disper-
mode arise§26] with the parabolic dispersion law, given by Sion law for waves in a free filamexdashed linegs As fol-
Eq. (17). lows from the above analysis, the liae=s, k, separates the
For the case of comparatively thin AFs, the theory devellegions of water-filament vibrations, localized in the vicinity
oped herein is near the limit of its applicability; however, it of the filament fro'm the'reglme of acoustic energy radiation.
is interesting to compare Figs. 2 and 3 with the results of thd herefore, the dispersion curves for free filament waves
normal-modes study of AFs by ben-Avraham and TirionShould be cut to the right of the=s,k; line. Second, the
[37]. These authors solved quasiperiodic equations of motiogoupling parametep,,/p specifies how much the frequen-
for rigid actin monomers forming a helical structure. Taking ¢ies in water-filament system deviate from the frequencies of
six degrees of freedom per each monomer, the authors &t free filament vibration. In no case can the dispersion curves
Ref.[37] calculated the frequencies of six vibrational modesfor & coupled system touch or cross the dispersion curve for
as a function of the phase lajbetween the monomers. Itis 2 free filament, corresponding to anotfilenver) vibrational
important to note that due to highéeylindrical) symmetry mode._Thus, Figs. 2 _and 3 prowae qgalltatwe information on
of the filament in our phenomenological model, the nOrma|the_un|versql properties of the vibrational spectrum for an
modes are characterized by wave vedpfdue to the trans- arbitrary cylindrical filamentous macromolecule.
lational invariancgand an azimuthal numben (due to the
ro'gational symmetry In_ a more reali_stic helical model, therg V. CONCLUSION
exist no pure translational or rotational symmetries, but in- ) . o
stead only the symmetry of simultaneous translational- In contrast to the motion of globular proteins, which is
rotational transformation described by the helical numbegharacterized by confined vibrational modes, long filamen-
#. The correspondence between the cylindrical numberoUs macromolecules support thgropagation of elastic

k,, m, and the helical numbep is established by the rela- Waves. Thus, it is convenient to describe the dynamics of
tion long proteins as a superposition of mechanical waves with

different frequencies» and wave vectorg along the mac-
d=k,/ +mdy, (18 romolecule. The most fundamental properties of the protein
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motion can be deduced from the dispersion law of thesacopic calculations of long protein dynamics.
modes and the pattern of vibration for each individual mode.

In this paper we described the general, universal proper- ACKNOWLEDGMENTS
ties of long protein dynamics by treating the protein as a . .
continuous medium and using the formalism of classical This study was supported in part, by the U.S. Army Re-
elasticity theory. While this model does not provide detailegS€arch Office and the Office of Naval Research. The authors
information about microscopic movements of each constitu|S0 acknowledge many helpful discussions with Dr. Oksana
ent element, such an approach can describe adequately tRé€nko on biological aspects of this work.
most important long-range, collective conformal motion of
the protein. The relative simplicity of the results thus ob- APPENDIX
tained, their independence on specific structure of the pro-
tein, emphasis on the most universal properties of vibration
and the inclusion of the solvent effects in the natural wa
allow this approach to complemeadl hocmicroscopic study
of protein dynamics.

As specific implementations of our modske alsd19]),
we have chosen two types of structures: long cylindrical rod
(present paperand hollow cylindrical shell$19] filled with
a solvent. These two topologically different geometries serv
as physically reasonable approximations for a large variet
of filamentous structures, such as MTs, AFs, and IFs. Th
elastic parameters of the model have been taken from meéqe
surements of flexural rigidity of these objects. The waves L =i ) =1"m3(| &]). (A1)
propagating near the shéfllameny interface were classified m m
and characterized according to their pattern, and the disper- As for the outer region, we have chosen the solutions in
sion of these waves was analyzed both analytically and nuerms of exponentially decreasing MacDonald’s functions
merically. In the long-wavelength limit, the results of the K. Thus, the scalar potentials in the outer region, described
simple linear theory for thin elastic rods have been reproby Eq.(3), correspond to evanescent waves in the surround-
duced. ing water, provided thatZ>0. In the opposite case of

In particular, for cylindrical geometryfilaments, two  ,,>s k,, the acoustic energy is radiated from the MT or
water-shell systenimicrotubules, there exist three acoustic spectrum with a negative imaginary part. The scalar potential

modes(one of them appears due to interaction with solyent gkes the form of outgoing cylindrical waves, and can be
and a set of helical, flexural wavgs9]. Both structures also ireated with the help of the identity

support higher frequency waves which become radiative at

large wavelength with mechanical energy leaking to the sur- Km(—i|&])=(m/2)i" *H Y (| «|), (A2)
rounding solvent. The results obtained in this paper are of

general, universal character and complement detailed micravhereH(! is a Hankel's function of the first kind.

< In Eq. (3) for scalar potentials in a filament-water system,
We have chosen the solutions of the wave equation in the
Yinner part of the filament in terms of the modified Bessel's
function|. These solutions describe interface vibrations, de-
caying exponentially toward the center of the MT or fila-
gnent, and correspond to the caserqﬁf, Kf>0. The opposite
case corresponds to confined vibrations, involving the whole
énterior part of the filament. Such vibrations can be still de-
cribed by the same equations after replacement of modified
essel’s functions$ by Bessel's functiond according to the
ntity
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