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We apply elasticity theory formalism to study long-range, collective vibrations of actin and intermediate
filaments, which are long cylindrical macromolecules and constitute part of the cytoskeleton network in
eukariotic cells. The dispersion relations are obtained for elastic waves propagating in the vicinity of filaments
which are modeled as elastic cylindrical rods immersed in a liquid. In the long-wavelength limit the filament-
water system supports two acoustic modes with propagation speeds of approximately 800 and 1300 m/s and a
single flexural wave with parabolic dispersion law. The presence of solvent leads to radiation of acoustic
energy from waves with a phase velocity exceeding the speed of sound of water. Our study complements the
existing normal-mode analysis of free actin filament vibrations and generalizes these results for different
structures as well as including the effects of solvents.@S1063-651X~96!12208-X#

PACS number~s!: 87.15.2v

I. INTRODUCTION

As evidenced by recent publications@1–3#, there is a ris-
ing interest in the physical science community in the me-
chanical properties of cytoskeleton. Besides its own impor-
tance, the cytoskeleton components~microtubules and
filaments! serve as biological counterparts to recently fabri-
cated nanotubules@4# and free-standing filaments@5#. The
cytoskeleton filamentous network, which is found in all eu-
kariotic cells, defines the cell shape and serves as a global
framework for mechanical and functional integration of the
whole cell @6#. Besides its shape-supporting function, the
filament system takes part in chromosomal movement, cell
motility @7#, provides tracks for guiding transport of particles
@8#, and could possibly directly transmit signals along the
filaments@9#.

The components of the cytoskeleton are classified accord-
ing to their diameter into three major classes@9#: actin fila-
ments ~6–10 nm!, intermediate filaments~7–11 nm!, and
microtubules~25 nm!. While the microtubules~MTs! have
the form of hollow cylindricalshells@10#, the actin filaments
~AFs! and intermediate filaments~IFs! could be in the first
approximation modeled as long cylindricalrods. More spe-
cifically, the results of x-ray fiber diffraction data@11# allow
us to describe the AF~F-actin! structure as two-stranded he-
lix consisting of the globular actin~G-actin! monomers. The
various types of IFs~including neurofilaments! are formed
by several 2–3 nm diameter protofilaments, twisted together
like the strands of a rope@9,12#.

In a series of experiments, the flexural rigidity and elastic
Young’s modulus for MTs@13# and AFs @14# have been
obtained from the measurement of thermal fluctuations in
end-to-end distance of the proteins. In more recent works,
the elastic parameters of the cytoskeleton components were
determined using Fourier-analysis of thermal fluctuations in

shape@15#, hydrodynamic flow@16#, and direct measure-
ments@17,18#.

In this paper we apply the formalism of classical elasticity
theory to describe the vibrational modes and mechanical
wave propagation in rodlike cytoskeleton components, such
as AFs and IFs, immersed in water. This study complements
our recent treatment@19# of elastic vibrations in MT-solvent
system. This investigation arises in the context of the general
problem of protein dynamics@20# and connection between
protein dynamics and function@21#, as well as the recent
advancements in experimental techniques, which enable us
to observe directly the movement of a single filament~see,
e.g., @18,22#!. From the point of view of physiology, the
motion of AFs is directly related to such important processes
as cell movement@7# and muscle contraction@23#. Analysis
of the sliding motion of cytoskeletal filaments, which are
propelled by the motor proteins such as myosin and kinesin
@2,3,24#, allows for better understanding of how a directional
motion is created in a Brownian physical system@25#. Re-
cently, thein vitro setup, in which the head of AF was spa-
tially fixed, was used to study the symmetry breaking insta-
bilities in spontaneous oscillations of the filament@1#.
Finally, our treatment of filament dynamics parallels the on-
going research on acoustic phonon confinement in free-
standing @26,27# and buried@28# semiconductor quantum
wires.

The simplest possible description of filament and MT vi-
brations is based on a linear model and is used extensively
for analysis of fluctuations in shape@15–17#. Further elabo-
rations of the one-dimensional model have addressed the
problem of instabilities in vibrations of AFs@1,3# and soliton
propagation in MTs@29# due to inclusion of nonlinear terms
in Hamiltonian and polarization effects@30#. The linear
model also serves as a basis for theoretical study of elastic
properties of cytoskeleton network@31#. Despite the univer-
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sality and simplicity of the linear model, its applicability is
restricted to a limit of extremely large wavelengths of the
propagating waves, where all the diversity of the vibrational
spectrum is reduced to pure longitudinal, torsional, and
bending modes.

On the other hand, the most exhaustive information about
internal motion of all constituent elements of the protein can
be obtained from microscopic calculations, such as normal
mode analysis@32,33#. In particular, Tirion and ben-
Avraham @34# used the a G-actin model@35# to obtain the
vibrational spectrum of a G-actin monomer bound with ADP
and Ca21. These calculations required solution of a general-
ized eigenvalue equation for 1384 torsional degrees of free-
dom of a 375-residue polypeptide chain. Assigning a thermal
energy ofkBT/2 ~whereT is the absolute temperature and
kB is Boltzmann’s constant! to each mode, the authors have
calculated the average fluctuations in the positions of
a-carbon atoms in the chain. It was found that over 50% of
the overall motion can be described by first four, slow
modes. Later@36#, the calculated slow normal modes of
G-actin were used as structural parameters to refine the
F-actin model@11# against 8-Å resolution x-ray fiber dif-
fraction data.

Most recently, ben-Avraham and Tirion@37# considered
propagation of elastic waves in long AFs. Ignoring the inter-
nal motion in actin monomers and allowing for quasiperiod-
icity ~helicity! of the F-actin structure, the authors obtained
six vibrational branches, corresponding to three translational
and three rotational degrees of freedom for each actin mono-
mer. The model describes the binding between actin mono-
mers with the help of a single phenomenological strength
constant, which is obtained by fitting to available experimen-
tal data. The calculated dependence of mode frequencyv on
the wave phasef reproduces qualitatively the results of the
linear model, and also describes the internal motion of AF.

Though the normal mode analysis, based on the solution
of equations of motion for all microscopic degrees of free-
dom, provides detailed information on both large-scale and
local conformal motion, it lacks some attractive features of
the linear model, such as universality and simplicity. Each
protein configuration requires separatead hoccalculations,
which become rather cumbersome with the increase in pro-
tein size. Besides, the detailed information on each vibra-
tional mode is often not required, since many fundamental
features of conformal motion can be explained using only the
slowest, large-scale collective vibrations. Finally, the inclu-
sion of solvent effects into the microscopic calculations is
not straightforward, especially under conditions when there
is radiation of acoustic energy from the vibrating protein into
the surrounding water. Description of such processes re-
quires consideration of large volumes of the solvent, which
therefore cannot be treated microscopically, but rather as a
continuous medium.

In this paper we extend the applicability of a simple linear
model, by taking into account the internal motion of proteins
by treating the interior as a continuous medium. Application
of a standard formalism of elasticity theory@38# allows the
description of universal features of wave propagation in ar-
bitrary cylindrical and hollow protein filaments. Such a treat-
ment complements the normal mode analysis, which requires
ad hoccalculations tailored to a specific structure@37# and

revealing both universal and microscopic, model-specific de-
tails of the vibrational spectrum. Universal properties of long
protein dynamics are also of major importance to many pro-
tein functions, since they represent long-range, slow, collec-
tive conformal motions of the protein.

Microscopic and elastic-medium approaches also comple-
ment each other in a sense that they have different~though
overlapping! ranges of applicability. The microscopic calcu-
lations work best for systems with small numbers of con-
stituent elements, such as AFs. To the contrary, with the
increase of the filament diameter~IFs and MTs!, the accu-
racy and limits of applicability of the continuous-medium
formalism increase, while the amount of computations and
number of required fitting parameters for the microscopic
calculations grow significantly. An additional benefit of the
macroscopic treatment is that it makes possible the inclusion
of the effects of the surrounding solvent in a natural and
simple way@39#. Macroscopic consideration of vibrations in
a water-protein system provides insight into the effects of
solvent on protein dynamics, and could facilitate the intro-
duction of reasonable physical approximations to be used in
microscopic calculations.

The rest of the paper is organized as follows. In Sec. II we
derive the general dispersion relations for waves supported
by a filament-fluid system; the analysis of the vibrational
spectrum follows in Sec. III, while the numerical results and
discussion are provided in Sec. IV. Finally, Sec. V contains
conclusions, and the Appendix details properties of Bessel’s
functions used in the text.

II. BASIC EQUATIONS

We model filaments~IFs and AFs! with an infinitely long
elastic cylinder immersed in water and occupying the region
r,R. The material of the cylinder is assumed to be isotropic
with Young’s modulusE and Poisson’s ration, and density
r. Below we apply the standard formalism of classical elas-
ticity theory, thus ignoring the solvent viscosity and the fric-
tion between the water and filament.

The general solution of the elasticity equations for dis-
placement vectoru inside the cylinder (r,R) can be written
in the form @38#

u5¹f1¹3~ezc!1R¹3¹3~ezx!. ~1!

Hereez is a unit vector along the axisz, and potential~s! f
(c, x) satisfy scalar wave equation with a propagation speed
equal to longitudinal~transverse! sound speedsl (st) in cyl-
inder material, where

sl
25

12n

~122n!~11n!

E

r
, st

25
E

2~11n!r
.

For the outer region,r.R, the displacements of wateruw is
specified by a scalar potentialF:

uw5gradF. ~2!

In order to describe harmonic vibrations~with frequency
v and wave vectorkz[k/R) in a coupled cylinder-water
system, localized near the surface of the filament, we set

54 1817DYNAMICS OF CYTOSKELETAL FILAMENTS



F

f

c

x
6 5

1

R
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ic0Km~kwr /R!

ic1I m~k l r /R!

c2I m~k tr /R!

c3I m~k tr /R!
6 3exp~ imw1 ikz/R2 ivt !.

~3!

In writing Eq. ~3!, it is assumed that the quantities (sw is a
sound speed in water!

k t
25k22~vR/st!

2,

k l
25k22~vR/sl !

2,

kw
25k22~vR/sw!2

are positive. Note that in the opposite case ofkw
2,0 ~i.e.,

v.swkz) the acoustic energy is radiated from the filament
into surrounding water. Also, ifk l ,t

2 ,0, the corresponding
scalar potentials specifyconfinedvibrations, which do not
decay exponentially towards the center of the filament. The
vibrations with negativekw

2 , k l
2 , or k t

2 can be still treated
with the help of Eq. ~3! using analytical properties of
Bessel’s functions, as shown in the Appendix.

Substituting the potentialsf, c, andx from Eq.~3! to Eq.
~1!, we find the components of the displacement vector in the
filament,

2 iur~r !5k lc1I m8 ~k l r /R!1mc2~R/r !I m~k tr /R!

1kk tc3I m8 ~k tr /R!,

2uw~r !5mc1~R/r !I m~k l r /R!1k tc2I m8 ~k tr /R!

1mkc3~R/r !I m~k tr /R!,

2uz~r !5kc1I m~k l r /R!1k t
2c3I m~k tr /R!. ~4!

From continuity of the displacements of water and filament
at r5R we obtain

c05
1

kKm8 ~k!
@k lc1I m8 ~k l !1mc2I m~k t!1kk tc3I m8 ~k t!#.

Applying standard boundary conditions@38# for a stress
tensor atr5R, and expressing the water pressurep in terms
of scalar potential,

p52rwF̈, ~5!

whererw is a water density, we arrive at the eigenequation
for elastic vibrations of coupled water-filament system:

D@c1 ,c2 ,c3#
T50 , ~6!

where the matrixD is equal to

D5F 2m~ I l02I l1! 2~k t
212m2!I t012I t1 2mk~ I t02I t1!

22kIl1 2mkIt0 2~k t
21k2!I t1

~2m21k21k t
2!I l022~11W!I l1 2m@ I t12~11W!I t0# 2k@~m21k t

2!I t02~11W!I t1#
G . ~7!

Here we use notationsI l ,t0[I m(k l ,t) and I l ,t1[k l ,tI m8 (k l ,t);
the term

W[
rw
r

Km~kw!

22kwKm8 ~kw!
S vR

st
D 2 ~8!

describes the effect of water on the vibration of the filament.
In the absence of water,W50, Eqs.~6! and ~7! reduce to
these for elastic vibrations of a free cylindrical rod@38,40#.
The dispersion relation of the vibrations in a water-filament
system is obtained by requiring that the determinant of ma-
trix D equals zero, and is analyzed in the following section.

III. ANALYSIS OF FILAMENT VIBRATIONS

The dispersion relation for the vibration of cylindrical
rods specifies an infinite number of modesvmj for eachm,
which we numerate asj50,1,2, . . . . Below we analyze two
distinct cases of axisymmetric (m50) and flexural (m>1)
vibrations.

A. Axisymmetric vibrations

In the case of axisymmetric vibrations (m50) the char-
acteristic equation specified by the matrixD in Eq. ~7! de-

fines two uncoupled sets of modes corresponding to pure
torsional and radial-longitudinal vibrations. Thetorsionalvi-
brations of the filament@see Fig. 1~a!# are decoupled from
the water motion and are characterized by the dispersion law

v0 j
~ t !5stA~j j /R!21kz

2 ~9!

and the displacement vector with componentsur5uz50,

uw}J1~j j r !. ~10!

Here the integer indexj numerates nonzero solutions of
equationJ2(j j )50. In addition to the generic set of solu-
tions in Eqs.~9! and ~10!, there exists a special modev00

(t)

with a linear dispersion law,

v00
~ t !5stkz ~11!

and the displacementuw}r 2, which does not belong to a
general solution of Eqs.~1! and~3! of the elastic equations of
motion.

The radial-longitudinalmodes@see Fig. 1~b!# are speci-
fied by a characteristic equation
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4k2k t
2 I 0~k t!

k tI 1~k t!
5~k21k t

2!2
I 0~k l !

k l I 1~k l !
12~11W!~k22k t

2!,

~12!

where the filament-water coupling factorW is given by Eq.
~8!. Note that Eq. ~12! is written in the assumption
k l
2.k t

2.0, i.e.,v.stkz . If this condition does not hold, the
modified Bessel’s functionI should be replaced by function
J as shown in the Appendix.

In the absence of water,W50, Eq.~12! is reduced to the
Pochhammer equation and was analyzed in much detail@40#.
The dispersion relation for thelowest radial-longitudinal
modev00

( lr ) in the limits of small and large wave vectorsk
has the following behavior:

v00
~ lr !~k!.HAE/rkz , k!1,

ssurfkzz, k@1 .
~13!

Thus, in the long-wavelength limit the acoustic mode
v00
( lr )(k) corresponds to longitudinal waves in thin rods@38#

with propagation speed ofAE/r. Since the water-filament
coupling termW given by Eq. ~8! tends to zero at small

frequenciesv, the asymptotic relationv00
( lr )(z).AE/rk is

not changed in the presence of water. In theshort-
wavelengthlimit, this mode describes the surface~interface!
Rayleigh ~Stonley! wave propagating near cylinder surface
~water-cylinder interface!. Corresponding propagation speed
s is found as a solution of standard algebraic equations for
Rayleigh or Stonley velocities@38#.

In the absence of water@40#, the dispersion ofhigher
order radial-longitudinal modes,v0 j

( lr )(kz) with j>1, can be
characterized by the following interpolation formula, valid in
the limits of k!1 andk@ j11:

v0 j
~ lr !~kz!.stA~z j /R!21kz

2, ~14!

where constantsz j are given by nonzero roots of the follow-
ing two equations:

J1~slz j /st!50 , ~slz j /2!J0~z j !5J1~z j !. ~15!

In the intermediate region, 1!k! j11, the waves propagate
with a bulk longitudinal sound speed,v}slkz .

Thus, atk50, the modes withj>1 have finite cutoff
frequencies equal toz jR/st . The situation is changed when
water is present. WhenWÞ0, the regionv.swkz corre-
sponds to radiation of acoustic waves out of the filament, and
is characterized by a complex frequency spectrum. Analysis
of Eq. ~12! shows that, with a decrease ofkz , the branches
v0 j
( lr ) enter the radiational sectorv.swkz at frequencies

v j , given by nonzero solutions of either of the following
two equations:

J1~v jRAsw222st
22!50 or J1~v jRAsw222sl

22!50 .
~16!

Finally, in the limit of large wave vectorkz , independent of
the presence of water, the dispersion relation takes the form
v.stkz , corresponding to the confined transverse waves in
the filament.

B. Flexural waves

Vibrations withm>1 describe the flexural waves of the
filament, and are specified by Eqs.~6! and ~7!. It has been
shown @26# that, in the absence of water, there exists only
one flexural mode@see Fig. 1~c!#, emanating from the origin
@i.e., v(0)50#. This branch corresponds to azimuthal num-
berm51 and is characterized by a parabolic dispersion at
kz!1:

v10~kz!.AE/rRkz2/2. ~17!

Such a type of vibration corresponds to the bending mode of
very thin rods and is predicted by a simple linear model@38#.
Since the water-cylinder coupling term, defined by Eq.~8!,
vanishes at smallv andkz , the long-wavelength asymptot-
ics, given by Eq.~17!, holds in the presence of water as well.

The rest of the flexural modes, in the absence of water,
have finite cutoff frequencies atkz50. With water present,
their frequencies gain a negative imaginary part at
v.swkz , and the acoustic energy is radiated from the wire.
At large wave vector,kz@m11, all flexural modes behave

FIG. 1. Schematic view of displacement patterns for different
vibrational modes of a filament:~a! axisymmetric torsional mode;
~b! axisymmetric radial-longitudinal mode;~c! example of a flex-
ural mode.
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like transverse waves,vmj.stkz , while in the intermediate
region of 1!kz!m11 the dependencevmj.slkz is re-
vealed.

IV. NUMERICAL RESULTS AND DISCUSSION

Analysis of Eqs.~6!–~8! performed in Sec. III provides a
qualitative description of elastic filament vibrations in a wa-
ter environment. In order to visualize the dispersion rela-
tions, we present the calculated dependencev(k) for axi-
symmetric torsional and radial-longitudinal waves in Figs. 2
and 3, respectively. To emphasize theuniversalproperties of
filament vibration, independent of absolute values of radius
R and material propagation speedst , we use the dimension-

less frequencyvR/st and the dimensionless wave vector
k5kzR.

In Fig. 2 we present the dispersion relations for a set of
axisymmetrictorsional vibrations of a cylindrical filament.
Since in our treatment the friction between water and fila-
ment surface is neglected, the pure torsional vibrations of the
filament are not coupled with the water motion, and are es-
sentially free. As seen from Fig. 2, there exists one acoustic
torsional wave with a linear dispersion law and propagation
speedst , given by Eq.~11!. The higher torsional modes,
given by Eq.~9!, are characterized by finite cutoff frequen-
cies atk50, and phase velocities approachingst in the short-
wavelength limit.

The spectrum of theradial-longitudinal vibrations, given
by Eq. ~12!, is more complicated~see Fig. 3!. The frequen-
cies of the filament vibrations in the presence of water and
without the surrounding water are marked by solid and
dashed lines, respectively; the dotted straight lines corre-
spond tov5slkz and v5stkz . Even in the case of free
filament vibrations, the form of modes depends on a dimen-
sionless parametersl /st5A2(12n)/(122n). Since the ab-
solute value of the Poisson’s constantn is unknown for most
macromolecules, we choose a typical value ofn50.3, lead-
ing to the ratio of bulk longitudinal and transverse propaga-
tion speedssl /st'1.87.

As seen from Fig. 3, the free vibrations of the filament
~dashed lines! are characterized by one acoustic mode and a
set of higher modes with finite cutoff frequencies. In the
long-wavelength limit, the acoustic wave propagates with a
speedAE/r'1.61st , in agreement with results of a simple
linear theory; at largek the acoustic mode becomes a surface
wave with a propagation speed equal to Rayleigh velocity,
ssurf'0.93st . The higher modes demonstrate an anticrossing
behavior in the regionslkz,v,stkz , and have a phase ve-
locity approachingst at higher wave vectorkz .

When the vibrations of filament are considered in the
presence of a water environment, the form of the dispersion
law is characterized by two additional dimensionless con-
stants: the ratio of water and the filament density,rw /r, and
the ratio of sound speed in water and in the filament,
sw /st . For concreteness, in Fig. 3 we presented the results of
numerical calculations with parametersrw /r and sw /st ,
corresponding to that for AFs. We note that for AFs the
limits of applicability of the continuous approach are limited
rather severely by the inequalityk&1, since the effective
radius of AF is of the order of that of an individual mono-
mer. However, in the case of AF we can rely on the experi-
mentally measured elastic constants and can compare quali-
tatively our results with normal-mode analysis by ben-
Avraham and Tirion@37#. We also discuss below how the
different values of the dimensionless parametersrw /r and
sw /st change the dispersion relations depicted in Fig. 3.

As for elastic constants, the experimentally measured
quantity isES, whereS is an effective cross-section of a
filament. Recent measurements of the parameterES for AFs
give the values of 43.764.6 nN @15# and 46.862.8 nN @17#.
Using the valueES546 nN, the mass of the actin monomer
M543 kDa, and the rise per monomerl 52.75 nm, we find
the propagation speed of acoustic radial-longitudinal wave
equal to AE/r5AESl /M'1.3 km/s. Then, using the

FIG. 2. Dimensionless frequencyvR/st vs dimensionless wave
vector k5Rkz for axisymmetric (m50) torsional vibrations of a
cylindrical filament.

FIG. 3. Dispersion relations,v0 j
( lr )(k), for axisymmetricradial-

longitudinal vibrations of the cylindrical filament. Solid~dashed!
lines correspond to vibrations of the filament with~without! water,
and modes withj50,1,2 (j50, . . . ,5).Dotted lines correspond to
v5slkz5swkz ~upper line! andv5stkz ~lower line!. Other nota-
tions coincide with those in Fig. 2.
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adopted value of Poisson’s ratio,n50.3, we find a transverse
sound speed,st5AE/2(11n)r'800 m/s, and a longitudinal
sound speed,sl5A(12n)E/(122n)(11n)r'1.5 km/s, of
the AF material. The bulk longitudinal propagation speed
sl of AF material practically coincides with the sound speed
in water,sl'sw . Finally, to find the AF radiusR and density
r, we should introduce a somewhat arbitrarily defined cross-
section areaS. TakingS525 nm2 @15#, we obtain the radius
R5AS/p'28 Å and filament densityr5M /l S'1.05
g/cm3. We also find that the dimensionless frequency,
vR/st , of Figs. 1 and 2 corresponds to a cyclic frequency
f 05st/2pR'45 GHz whenvR/st51.
The dispersion relations for the axisymmetric radial-

longitudinal modes correspond to solid lines in Fig. 3. The
most important effect of water on the vibration of the fila-
ment is that the acoustic energy is radiated by those waves
with the phase velocities,v/kz , exceeding the speed of
sound in water,sw . The lowest~i.e., acoustic! mode has, in
the long-wavelength limit, a propagation speed
AE/r'1300 m/s which is lower than the sound speed in
water, and is not affected by the presence of solvent for
k!1. At large wave vectork, the lowest mode corresponds
to interface vibrations and has a propagation speedssurf,
lower than the Rayleigh speed in the absence of water. In the
regionv.swkz , the higher-order modes are radiated from
the filament and are not shown in Fig. 3, since their frequen-
cies are complex. The frequencies of the higher-order modes
coincide with those for a free filament atv5swkz , and in
the region ofv.swkz the vibrational frequencies in the
coupled water-filament system are slightly lower than those
for a free filament. At large wave vector,kz.v/st , the
propagation speeds for waves in both filament-water system
and free filament approach the bulk transverse speedst . We
do not present the numerical results for the flexural modes
(m>1), since qualitatively the behavior of these modes is
similar to higher-order modes in Fig. 3. The only exception
occurs in the case ofm51, where an additional bending
mode arises@26# with the parabolic dispersion law, given by
Eq. ~17!.

For the case of comparatively thin AFs, the theory devel-
oped herein is near the limit of its applicability; however, it
is interesting to compare Figs. 2 and 3 with the results of the
normal-modes study of AFs by ben-Avraham and Tirion
@37#. These authors solved quasiperiodic equations of motion
for rigid actin monomers forming a helical structure. Taking
six degrees of freedom per each monomer, the authors of
Ref. @37# calculated the frequencies of six vibrational modes
as a function of the phase lagf between the monomers. It is
important to note that due to higher~cylindrical! symmetry
of the filament in our phenomenological model, the normal
modes are characterized by wave vectorkz ~due to the trans-
lational invariance! and an azimuthal numberm ~due to the
rotational symmetry!. In a more realistic helical model, there
exist no pure translational or rotational symmetries, but in-
stead only the symmetry of simultaneous translational-
rotational transformation described by the helical number
f. The correspondence between the cylindrical numbers
kz , m, and the helical numberf is established by the rela-
tion

f5kzl 1mf0 , ~18!

where l 52.75 nm is the rise per monomer and
f05166.15° is the angle of rotation between subsequent
monomers.

Combining, with the help of Eq.~18!, Figs. 2 and 3 for
axisymmetric vibrations as well as modes withm>1, we
obtain the dispersion dependence which is qualitatively simi-
lar to that of Ref.@37#, for wave vectoruku,1. Both ap-
proaches reproduce two acoustic modes~at f!1, or k!1
andm50) and one helical mode~at f'f0, or k!1 and
m51) predicted by the simple linear model, as well as the
finite cutoff frequencies of higher modes in the absence of
water, and complex anticrossing behavior along the line with
v5slkz . There also exist several dissimilarities due to the
differences in the models. The continuous model is unable to
describe the dispersion law in the region off'p/2, while
the ad hoc calculations provide important information on
merging of different modes. The normal mode analysis,
based on the assumption ofrigid monomers, resulted in only
six branches; inclusion of the internal degrees of freedom
would lead to a larger number of vibrational modes, in quali-
tative agreement with the elastic continuum model. The mi-
croscopic calculations of ben-Avraham and Tirion, based on
a single fitting parameter, resulted in the propagation speed
st5410 m/s for the torsional vibrations. This value, com-
pared to the speedAE/r'1.3 km/s of radial-longitudinal
vibrations ~reproduced in both models!, results in an un-
physical value of Poisson’s ratio,n'23.5, and therefore
contradicts the assumption of isotropic elastic continuum. At
last, our treatment provides information about the effects of
solvent on the AF vibration, with the most important conclu-
sion being that the acoustic energy is radiated from AF over
wide ranges of frequency and wavelength.

Finally, we discuss how the dispersion law, depicted in
Fig. 3 for the specific valuesrw /r50.95 andsw51.88st ,
varies as parameters change. It follows from Fig. 3 that the
form of dispersion curves for the water-filament vibrations
~solid lines! can be qualitatively predicted from the disper-
sion law for waves in a free filament~dashed lines!. As fol-
lows from the above analysis, the linev5swkz separates the
regions of water-filament vibrations, localized in the vicinity
of the filament from the regime of acoustic energy radiation.
Therefore, the dispersion curves for free filament waves
should be cut to the right of thev5swkz line. Second, the
coupling parameterrw /r specifies how much the frequen-
cies in water-filament system deviate from the frequencies of
a free filament vibration. In no case can the dispersion curves
for a coupled system touch or cross the dispersion curve for
a free filament, corresponding to another~lower! vibrational
mode. Thus, Figs. 2 and 3 provide qualitative information on
the universalproperties of the vibrational spectrum for an
arbitrary cylindrical filamentous macromolecule.

V. CONCLUSION

In contrast to the motion of globular proteins, which is
characterized by confined vibrational modes, long filamen-
tous macromolecules support thepropagation of elastic
waves. Thus, it is convenient to describe the dynamics of
long proteins as a superposition of mechanical waves with
different frequenciesv and wave vectorsk along the mac-
romolecule. The most fundamental properties of the protein
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motion can be deduced from the dispersion law of these
modes and the pattern of vibration for each individual mode.

In this paper we described the general, universal proper-
ties of long protein dynamics by treating the protein as a
continuous medium and using the formalism of classical
elasticity theory. While this model does not provide detailed
information about microscopic movements of each constitu-
ent element, such an approach can describe adequately the
most important long-range, collective conformal motion of
the protein. The relative simplicity of the results thus ob-
tained, their independence on specific structure of the pro-
tein, emphasis on the most universal properties of vibrations,
and the inclusion of the solvent effects in the natural way
allow this approach to complementad hocmicroscopic study
of protein dynamics.

As specific implementations of our model~see also@19#!,
we have chosen two types of structures: long cylindrical rods
~present paper! and hollow cylindrical shells@19# filled with
a solvent. These two topologically different geometries serve
as physically reasonable approximations for a large variety
of filamentous structures, such as MTs, AFs, and IFs. The
elastic parameters of the model have been taken from mea-
surements of flexural rigidity of these objects. The waves
propagating near the shell~filament! interface were classified
and characterized according to their pattern, and the disper-
sion of these waves was analyzed both analytically and nu-
merically. In the long-wavelength limit, the results of the
simple linear theory for thin elastic rods have been repro-
duced.

In particular, for cylindrical geometry~filaments!, two
acoustic waves and one helical wave have been found. As for
water-shell system~microtubules!, there exist three acoustic
modes~one of them appears due to interaction with solvent!
and a set of helical, flexural waves@19#. Both structures also
support higher frequency waves which become radiative at
large wavelength with mechanical energy leaking to the sur-
rounding solvent. The results obtained in this paper are of
general, universal character and complement detailed micro-

scopic calculations of long protein dynamics.
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APPENDIX

In Eq. ~3! for scalar potentials in a filament-water system,
we have chosen the solutions of the wave equation in the
inner part of the filament in terms of the modified Bessel’s
function I . These solutions describe interface vibrations, de-
caying exponentially toward the center of the MT or fila-
ment, and correspond to the case ofk l

2 ,k t
2.0. The opposite

case corresponds to confined vibrations, involving the whole
interior part of the filament. Such vibrations can be still de-
scribed by the same equations after replacement of modified
Bessel’s functionsI by Bessel’s functionsJ according to the
identity

I m~2 i uku!5 i2mJm~ uku!. ~A1!

As for theouter region, we have chosen the solutions in
terms of exponentially decreasing MacDonald’s functions
K. Thus, the scalar potentials in the outer region, described
by Eq. ~3!, correspond to evanescent waves in the surround-
ing water, provided thatkw

2.0. In the opposite case of
v.swkz , the acoustic energy is radiated from the MT or
filament, and the system is characterized by a frequency
spectrum with a negative imaginary part. The scalar potential
takes the form of outgoing cylindrical waves, and can be
treated with the help of the identity

Km~2 i uku!5~p/2!i m11Hm
~1!~ uku!, ~A2!

whereHm
(1) is a Hankel’s function of the first kind.
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